Investigating the Bubble Point Pressure Discrepancy by History Matching for Mishrif Reservoir, Southern Iraqi Oil Field

Alaa S. Al-Rikaby¹,²,* and Mohammed S. Al-Jawad¹

¹ Department of Petroleum Engineering, University of Baghdad, Baghdad, Iraq
² Thi-Qar Oil Company, Iraqi Ministry of Oil, Nasiriya, Iraq
* Correspondence: alaa.awad2108p@coeng.uobaghdad.edu.iq

Abstract
Carbonate reservoirs have been a primary focus for academics and oil and gas companies for many years. However, the complex nature of these rocks has always posed challenges. This is particularly true in the study area, which is located in the unstable Mesopotamian Basin, where multiple oil fields produce hydrocarbons from NW-SE-trending anticlines along the Zagros Fold-Thrust Belt. The primary goal of reservoir simulation is to forecast reservoir performance and apply different techniques to improve hydrocarbon recovery under different conditions. The study area faces a problem of discrepancy in the bubble pressure at the same reservoir unit, which is attributed to the faults in the Mishrif reservoir. A study was conducted to investigate the causes of this phenomenon. The proposed method for verification involves simulating history matching using the Petrel platform after building two geological models on the probability of the fault and the reef; as a result of seismic survey interpretation. Field data for gas production of the reservoir and Pressure-Volume-Temperature analyses, especially the wells (well pad F), were used to determine the causes of the discrepancy. The current study found that the calculated and observed data match more consistently in the case of the fault rather than in the case of the reef, indicating the presence of fault in the area near the well pad F. This caused compartmentalization, leading to the discrepancy in the bubble pressure. This study could significantly improve regional exploration, especially in Iraq.

Keywords: Mishrif reservoir; Bubble point; History matching; Reef; Fault

1. Introduction

In the southern part of Iraq's Jurassic-Cretaceous petroleum system, hydrocarbons are primarily found in sandstone and carbonate reservoirs from the Lower Cretaceous rocks. The crude oil is produced from the organic-rich Upper Jurassic Sargelu and Sulaiy formations, transforming the Lower Cretaceous carbonates of the Yamama and Zubair formations into a clastic reservoir (Boschetti et al., 2020). Seismic surveys provide crucial geophysical data from the rocks beneath the earth's surface. The general principle involves sending artificially generated acoustic waves down the column into subsurface of the earth, where the different structures and objects within the Earth's crust reflect this energy according to their acoustic impedance. When combined with other analytical methods, such as well-log and core analyses, tracer, and well-test analyses, this data enables the creation of highly accurate geologic maps and models. The 3D seismic data is particularly useful in characterizing reservoir heterogeneity, vertical zonation, lateral compartmentalization, and anisotropy or directional fluid flow in the reservoir (Mondol, 2010; Baker and Al-Rikaby, 2017; Al-Rubaye and Hamd-Allah, 2019; Alameedy et al., 2023). Seismic

DOI: 10.46717/igj.57.1C.7ms-2024-3-19
reflections offer an excellent graphical presentation of the subsurface and geologic features, providing seismic data, velocity, and time contour maps to identify various traps (Trezzi et al., 2022; Alher et al., 2018; Al-Jawad and Kareem, 2016). Additionally, the reflections help interpret sedimentary architecture and environmental paleogeographic depositions (Ali et al., 2018; Khawaja and Thabit, 2021). The study area is remarkable for interpreting 3D seismic reflections, post-stack times migrated data, and well data. In the petroleum industry, the static (geological) model is essential as the initial stage in reservoir modelling for estimating reservoir performance under various hydrocarbon production scenarios (Baker and Al-Rikaby, 2017; Alher et al., 2018; Baker et al., 2019). This model represents real-world events or things and incorporates all geological features of the number of hydrocarbons trapped in subsurface rocks (Abbas and Mahdi, 2020; Alhusseini and Hamd-Allah, 2022). The findings of these several phases are incorporated into a 3D framework to create a full static model (Al-Fatlawi et al., 2017; Abd Talib and Al-Jawad, 2022). This model identifies the reference setting for determining the quantity of hydrocarbon in the reservoirs and serves as the foundation for the dynamic model's initialization (Witter et al., 2016; Al-Rikaby and Baker, 2017). Using static and reservoir models enables engineers to determine which development options will result in the most secure and cost-effective development plan (Abdulredah and Al-Jawad, 2022; Aziz and Hussein, 2021). This static model can be utilized to construct a dynamic model to identify reservoir behaviors, detect and resolve reservoir problems, and simulate multiple scenarios, considering various exploitation schemes and working environments to enhance its depletion strategy most accurately (Alher et al., 2018; Al-Jawad and Kareem, 2016; Abdulredah and Al-Jawad, 2022; Al-Joumaa and Al-Jawad, 2019; Abdulameer and Hamd-Allah, 2020). There was an issue with the bubble point discrepancy in the study area, which required a comprehensive reassessment of the Mishrif Formation.

The study aimed to investigate the problem and identify its causes, including faults and reefs, by re-evaluating the seismic survey with a subscription of log data such as density, acoustic, and vertical seismic profile (VSP) obtained from the Iraqi Ministry of Oil. These logs were a crucial component of the comprehensive re-evaluation of the formation or reservoir. To determine whether faults or reefs were accountable for the issue, the current study compared the reservoirs and matched their historical models following the construction of a static model based on two probabilities: fault and reef. This novel approach confirmed this uncommon geoscience and reservoir engineering problem. The hydrocarbon samples from the reservoir under consideration had various measured bubble point pressures between wells, indicating that the reservoir compartment might be responsible for this discrepancy. Therefore, the seismic survey, along with the density, acoustic, and VSP records, were re-evaluated in this study, revealing anomalies that may be attributed to faults or reefs. This study's strategy was to compare each probability to the measured reservoir production data, and the one that matched the measurements was selected. The new methodology introduced in this work is useful for resolving some reservoirs' abnormal behaviors, which may result from unpredictability in reservoir compartments.

2. Geological Settings

The study area is situated in the southern part of Iraq, specifically in Thi-Qar Governorate, approximately 5 km northwest of Rifai town and 85 km north of Nasiriya city (Petronas, 2017). The oil reserves in the field were first discovered by the seismic survey crew of the National Oil Company in 1984. As a result, three exploratory wells were drilled to confirm the oil reserves of the four reservoirs, namely Mishrif, Zubair, Ratawi, and Yamama as seen in Fig. 1. The Mishrif Formation, a heterogeneous carbonates reservoir, is the most significant reservoir in Garraf field and other oilfields in the southern part of Iraq which is a shallow water limestone succession with a Cenomanian-Early Turonian age that prograde from basinal deposits (Al-Mimar et al., 2018; Alameedy et al., 2023). The Khasib Formation overlies the Mishrif, while the Rumila Formation underlies it. Currently, 117 wells are drilled in the
Mishrif reservoir, with a production capacity of 120,000 barrels per day based on variations in the bubble point pressure. Additionally, water injection of 100,000 barrels per day is done from the Third River, officially named the main outfall drain (MOD).

The research region is located in an unstable region within the Mesopotamian basin of the Arabian Plate (Al-Ameri et al., 2009), as shown in Fig. 2. It is surrounded by several oil fields that produce hydrocarbons from NW-SE-trending anticlines, which are compatible with the direction of the Zagros folded axis (Jassim and Goff, 2006).

3. Materials and Methods

To reach the current study's goals and uncover the ambiguities of the Mishrif reservoir, it is necessary to review again the seismic data and perform a structural analysis to detect any faults or reefs based on a 3D seismic survey. With the assistance of well-logging (VSP, density log, and sonic) and well tops, seismic data has been gathered, and a synthetic seismogram has been created. This seismogram results from 1D forward modelling of earth layers as a seismic response or the actual well seismic trace. Converting well tops from depth to time domain would enable us to follow the behavior of each one in the oil field and better understand seismic interpretation. Additionally, a synthetic
Fig. 2. Tectonic provinces of Iraq (Jassim and Goff, 2006)

seismogram distinguishes the true primary reflector of the formation’s tops from the multiple reflectors, helping the interpreter track false structures. The seismic interpretation has revealed several abrupt discontinuities in the seismic reflectors of the reservoir’s units of the Mishrif Formation. Seismic analysis indicates the possible existence of either a reef or a fault, as shown in Fig. 3A. A geological model has been generated based on two probabilities: fault and reef. Subsequently, using the Petrel 2021 software, a dynamic model has been created based on the geological model, and successful history matching has been achieved to determine the correct probability. The wells (well pad-F) between potential faults have different oil specifications, particularly regarding Pressure-Volume-Temperature (PVT) analysis, as they have a bubble point of 2135 psi, which is different from other wells with a bubble point of 2646 psi. In the case of faults, the reservoir is divided into two regions based on the mentioned bubble point and the location of potential faults; as shown in Fig. 4. History matching was carried out for each region separately. Subsequently, the reef case was history-matched based on the bubble point pressure of 2646 psi for the entire reservoir, treating it as one region. Table 1 represents the two regions of two cases and their bubble points.

4. Results and Discussion

The concerned oilfield has produced oil for about ten years. However, matching the observed production data with the simulated model requires multiple iterations. To optimize gas production in the Mishrif reservoir, specific actions are taken to alter its sensitive qualities. The horizontal permeability in the X and Y directions, Kx and Ky, respectively, is multiplied by 2.3. The skin factors
Table 1. The two regions of the two cases with bubble point values

<table>
<thead>
<tr>
<th>Region</th>
<th>Bubble point pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region 1 for reef case</td>
<td>2646 psi (for the whole reservoir)</td>
</tr>
<tr>
<td>Region 1 for fault case</td>
<td>2135 psi (between two potential faults)</td>
</tr>
<tr>
<td>Region 2 for fault case</td>
<td>2646 psi (for remainder of reservoir)</td>
</tr>
</tbody>
</table>

Fig. 3. Locations of possible faults on seismic inline section

of multiple wells are calibrated to match the oil production rate generated by the simulation model with the observed data. The compressibility factor can be reduced to modify it; since it has an inverse relationship with the reservoir pressure. To make a history matching of a fault case with a different bubble pressure (2135 psi), the fault zone needs to be isolated as region 1. The well pad (F) PVT data is used for this purpose. The remainder of the reservoir is set to the original PVT data with a bubble pressure of 2646 psi, referred to as region 2.

Similarly, for the reef case, the Mishrif reservoir is treated as a single region, and history is matched according to the bubble point pressure of 2646 psi for the whole reservoir. Fig. 5 illustrates how the fault case (blue line) has become more consistent and identical with observed data (green ball) from the reef case (red line) for the entire field. The field gas data provides an initial indication of the Mishrif reservoir’s fault validity.
Fig. 4. Potential faults’ locations on the contour map for the top of the Mishrif reservoir

Fig. 5. History matching for fault and reef cases in the Mishrif reservoir

Figs. 6 and 7 compare the history matching as well behaviour for both cases of fault and reef scenarios. The results indicate that the well behaviour gave a second indication of a fault case, which did not match the reef case’s scenario.
Fig. 6. History matching for fault and reef cases in well Ga-F23P

Fig. 7. History matching for fault and reef cases in well Ga-F24P
5. Conclusion

The study area, which consists of carbonate rocks, is located in the unstable Mesopotamian basin within the Arabian Plate, which makes it a field with high heterogeneity. Re-interpreting the data of the seismic survey with a subscription of log data, including density, sonic, and vertical seismic profile (VSP), gave an excellent graphical representation of the subsurface and geologic features, especially when it was combined with the geological model and was used together in reservoir simulation. It is crucial to emphasize the significance of seismic interpretation in effectively identifying and detecting faults, reefs, and other geological structures. History matching simulation is an innovative method for investigating geological faults and structures using the necessary data. The history matching simulation indicated the presence of two faults that created a compartment within the Mishrif reservoir, resulting in the bubble point discrepancy.

Acknowledgments

The author would like to thank the Oil Exploration Company and Thi-Qar Oil Company for their support in accomplishing this research.

References


